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Abstract—Keystroke dynamics has proven to be highly effec-
tive, with its applications expanding significantly over the years
in areas such as preventing transaction fraud, account takeovers,
and identity theft. Key-positioning and feature-learning methods
are commonly used to identify keystroke signals. However,
the existing methods face challenges in detecting overlapping
keystrokes and environmentally changed signals. We propose a
solution called Chameleon to address these limitations. Unlike
previous signal separation and deep learning methods that are
ineffective in keystroke signals and computationally demanding,
Chameleon employs a low-computation Ranking Model to sep-
arate overlapping keystroke signals. Moreover, our experiments
demonstrate that Chameleon separated signals can be recognized
with an average accuracy of 92.69%, surpassing the commonly
used FastICA method, which only reaches 25% accuracy. To
account for environmental changes, we utilize the Fréchet In-
ception Distance (FID) as a guiding metric for model migration.
Additionally, we introduce the Inductive Vector, which enables
our key-identifying model to adapt to altered environmental
conditions such as environment, phone location, and user variety.
The Inductive Vector adjusts the model parameters based on
the shift in FID. In scenarios with various phone locations,
the Inductive Vector significantly improves recognition accuracy
from 61% to 98%, outperforming the best existing keystroke
recognition algorithm. In other dynamic environmental condi-
tions, our approach achieves an average accuracy rate of 81.7%,
which is at least 1.6 times better than the current state-of-the-art
keystroke recognition algorithm.

I. INTRODUCTION

The proliferation of Internet of Things (IoT) devices has
seamlessly integrated into various aspects of our lives, encom-
passing applications in sensing [1]–[7], dietary management
[8], industrial automation [5], [9], and more [10]–[19].

Keystroke identification has been devised to address the
challenges surrounding mobile technology interaction. In
2004, Asonov [20] demonstrated that a 10-minute analysis
of Keystroke Acoustic Signals successfully recovered 96%
of the text. This discovery brought to light the potential
for decompiling text through Keystroke Acoustic Signals.
Consequently, a significant amount of research has emerged
in the field of Keystroke Acoustic Signals recognition.

1These authors contributed equally to this work.
2Corresponding authors.

Existing research in keystroke identification can be cate-
gorized into two main groups: Key-positioning and feature-
learning methods. Key-positioning studies focus on using the
propagation model of acoustics in physical space, with TDOA
(Time Difference of Arrival) being the most commonly used
method [21]–[23]. However, there is a significant challenge:
the keystrokes are not always point-source sounds or Far-field
acoustics, which can lead to substantial errors in the TDOA
results.

Although much research has achieved remarkable results
in text recovery from Keystroke Acoustic Signals, reaching
theoretical results in field deployment is challenging. The
reason is that the signal information includes overlapping
unknown sources of Keystroke Acoustic Signals, the change
of venue, and the movement of mobile phone placement
introduces different multi-path superpositions the user variety
that leads to the shift in tapping habits. All this unfavorable
information introduces the original signal features into a new
domain space, resulting in a sharp drop in accuracy.

Many studies have proposed techniques for separating these
overlapping signals from unknown sources, called blind source
separation techniques. These techniques mainly include Inde-
pendent Component Analysis [24], Sparse Component Anal-
ysis [25]. Non-negative Matrix Factorization [26], Bounded
Component Analysis [27], blind source separation neural
networks [28]. However, these techniques require the signal
to satisfy certain assumptions, such as particular distribution.
Therefore, it isn’t easy to deal with overlapping Keystroke
Acoustic Signals, which is unknown distribution.

A promising but challenging solution is to design an adap-
tive model. Similar to a chameleon, this model will adjust its
protective color in response to environmental variations. This
model can discern the environmental conditions alterations and
transition the initial model to suit the new domain.

However, we are confronted with three technical hurdles
to realize this adaptive model. First, we must separate the
overlapping Keystroke Acoustic Signal. We need to recognize
and separate the overlapping signals without missing features.
However, restoring each signal using characteristics without
prior knowledge may produce many wrong combinations.
Second, we need a basis for deciding whether the model needs
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to be migrated. Because each signal may have a different
source, locating the model of the signal is a critical step.
According to the corresponding model, we need to develop
the judgment basis. The third challenge is how we transfer the
model to the correct domain. This way requires changing a lot
of parameters. Therefore, we need to change these parameters
to the correct vector direction and displacement magnitude.

In this paper, we innovatively utilize a Ranking Model to
address the overlapping keystroke acoustic signal separation.
Because the signal features that could contribute more than
80% to the classification results were located in the signal
initiation stage, it is more efficient to obtain the overlapping
keystrokes’ starting points precisely than the traditional blind
keystroke separation methods, like cleaning irrelevant features.
The accuracy of signal separation is more than 90%, much
higher than the 25% of the commonly used method FastICA.
The key-identifying model can recognize the separated signals
with 92.69% accuracy on average.

Meanwhile, we found that FID (Fréchet Inception Distance)
is highly correlated with environmental changes, so we let
the FID serve as the commander in model migration. This
information helps the model know when and where to migrate.

We also design Inductive Vector methods to adapt our key-
identifying model to environment dynamics (such as venue,
phone location, and user diversity). The Inductive Vector can
adapt the model parameters according to the shift of FID. For
various mobile phone locations, the Inductive Vector method
improves recognition accuracy from 61% (the maximum
achieved by other methods) to 98%, significantly surpassing
the best existing keystroke recognition algorithm. In terms of
environmental dynamics, the accuracy rate of the Inductive
Vector method is 81.7%, making it at least 1.65 times and up
to 71 times more accurate than the leading current keystroke
recognition algorithm.

Through the system design, we make the following contri-
butions:

• To the best of our knowledge, Chameleon is the first sys-
tem that can adapt to the environment and recover mixed
keystroke information from more than one keyboard.

• We introduce an innovative signal separation method that
can be used in overlapping keystroke acoustic signals.
Through experiments, we found some key factors that
affect overlapping keystrokes.

• We introduce the Inductive Vector, which assists in
adapting our key-identifying model to environmental dy-
namics, such as location, phone location, and different
users, thus enhancing accuracy in new environmental
conditions. Additionally, we present FID, an innovative
method that guides adjustments to the model.

II. OVERLAPPING KEYSTROKE ANALYSIS

A. Probability of Overlapping

Keystroke recognition rarely accounts for overlapping sig-
nals, which can pose challenges when implemented in real-
world scenarios. In this section, we will demonstrate a straight-
forward model to demonstrate the significance of this issue.

In a typing scenario, such as in an office, it is essential to
recognize that keystrokes occur randomly and independently
of one another because each individual types as per their needs
and requirements. Assuming everyone is typing, the proba-
bility of keystroke events can be seen as the average typing
rate. We want to observe the overlapping of the signal, which
would indicate the occurrence of multiple events within the
same timeframe. We can reference the Poisson distribution to
determine the probability of multiple random events occurring
within a given period of time. The Poisson distribution is
P (X = k) = λ

k

k!
e
−λ

, k = 0, 1, ... where X is the overlap times
X of keystrokes, and λ is the average number of keystrokes
that occur per unit of time.

Considering the average typing speed is about 180 kpm
(180 characters per minute = 3 kps), and the keystroke signal
length is 250 ms, the average number of keystroke events is
λ =

250ms
1000ms

∗ 3kps = 0.75. The probability of the keystroke
overlapping means that two keystrokes occur simultaneously,
so the X > 1, which is P (X > 1) = 1−P (X = 0)−P (X =

1) ≈ 1 − 47.24% − 35.43% = 17.33%. That means the
keystrokes have severe overlapping and amount to nearly one-
fifth of the total keystrokes made in the actual scenario when
only considering two people are typing.

B. The Influence of Overlapping Keystroke

It is essential to investigate the impact of overlapping sig-
nals. This section will analyze keystroke signals and demon-
strate how overlapping signals affect the results.

1) The Contribution Distribution in each Keystroke: For our
study, we gathered 23,200 labeled keystrokes (58 keys in the
main keyboard area) and calculated their amplitude-spectrum
values (ASV). We selected four commonly used machine
learning models in keystroke recognition research: BP(Back
Propagation), KNN (k-Nearest Neighbor), Linear Regression
Classification, and Support Vector Machine (SVM). We aimed
to identify which parts of the signals’ features significantly
influence machine learning.

Given that the underlying principles of these four models
differ, it is crucial to develop tailored methodologies for each
model. Unlike the other three models, KNN operates as a
parameter-free model and does not factor in the weight of
each feature. Instead, KNN is determined based on the labels
of the k nearest neighbor instances. Therefore, to ascertain the
impact of the features on the KNN model’s predictive capacity,
we will employ feature selection techniques. Subsequently, we
will evaluate the effects of eliminating features on the model’s
accuracy.

The experimental findings revealed that over 80% of the
contributions to the classification outcomes were concen-
trated within the initial 62.5ms in the 250 ms keystroke
signal. These outcomes indicate that the classification model’s
accuracy is significantly decreased when another keystroke
signal disrupts the leading edge of a keystroke signal. It
means if another keystroke signal disrupts the ”head” of a
keystroke signal, the classification model’s accuracy will be
significantly reduced. The proliferation of people engaging
in typing activities will result in a significant surge in this
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phenomenon. Consequently, classification models are likely to
encounter a substantial influx of misjudgments.

2) The Interference Factors of the Overlapping Signal: In
the preceding section, we observed that the trained model tends
to display a bias towards the leading edge of the signal due
to the uneven distribution of compelling keystroke features.
In this section, we will discuss two factors that contribute to
the shortcomings of traditional keystroke recognition methods:
”High-Weight Feature Interference” (HWFI) and ”Seg-
ment Deviation”.

Due to the front-heavy weight distribution of the model,
it is evident that introducing interference to the front of
the signal would impact the model’s accuracy, which is a
phenomenon we call ”High-Weight Feature Interference”
(HWFI). However, the impact has not been discussed in past
research. To explore this further, we conducted an experiment
whereby we introduced noise like the keystroke signal, causing
it to ”permeate” into the signal from two directions, respec-
tively. We focused on continuous signal segments rather than
affecting a random sample point. We then observed how the
classification effectiveness of four different models changed as
the duration of noise ”permeate” increased. To present the data
comprehensively, we chose the data with the highest overall
classification accuracy rate for representation. The results in
Fig 1 revealed that the accuracy dropped below 50% at 27 ms.
If the noise covers the last segment of the signal, there is no
notable decline in the classification accuracy.

Segment deviation significantly impacts the model’s clas-
sification performance. This refers to the bias in segmenting
the signal. When applying Voice Activity Detection (VAD)
to segment noise-overlapping signals, the bias caused by the
noise in the starting position leads to a considerable decrease in
the model’s classification accuracy. This is depicted in Figure
2, where the accuracy drops below 20% across all four models.

3) Low accuracy in blind source separation: The available
techniques for handling overlapping signal processing in signal
analysis are to separate them into original signals, broadly
classified into two categories. The first category comprises
methods that rely on statistical analysis to estimate the source
signal, such as FastICA, without prior knowledge. These meth-
ods assume that the source signals are statistically independent
in the mixed signal and are a linear combination. However,
due to the complex combination of keystrokes, these methods’
classification accuracy could be higher than VAD depicted in
Fig 2, but still lower than 30%.

On the other hand, the second category of methods involves
using prior knowledge, such as Deep Learning, to address this
issue. Deep Learning leverages prior knowledge to separate the
signals. However, the computational complexity and practical
feasibility of deploying deep learning methods for keystroke
segmentation pose significant challenges. Therefore, the ques-
tion arises: Is it necessary to separate overlapping keystrokes
into their original signals?

The answer is negative. The model can be enhanced by
tweaking the distribution of the model weights ( More suitable
for environmental attribute changes, and we’ll cover this in
section III) and implementing precise segment cuts (in the next
section). This will reduce the computing power requirements.

4) Modifying the Model Weights: However, it is worth
noting that we cannot simply amplify the weight of the second
half of the signal in the model to improve the recognition ac-
curacy. Previous experiments have demonstrated the accuracy
achieved without Segment Deviation under noise interference
conditions. We will introduce two random keystrokes for the
upcoming experiment to better mimic real-world scenarios.
The second signal will randomly overlap with the first sig-
nal by simulating the random occurrence of keystrokes and
their subsequent overlapping. We measured the improvements
in classification separately by adjusting the segmentation,
modifying the model weights (amplifying the weight of the
second half of the signal in the model), and combining both
approaches. Fig 3 depicts the boosting effect that these three
methods have on the four models. That means recognizing
that the overlapping keystrokes may not need to be separated
into original signals or modify the model weight. Compared
with VAD, only adjusting the segmentation starting point can
improve the keystroke recognition accuracy of the second
signal to larger than 65%.

III. FEATURES TRANSFER

The previous research has identified a challenge in the
performance of Classification Models when confronted with
changing conditions. Although there are a large number of
transfer learning algorithms, these solutions are designed for
images, and there is still a lack of a transfer method designed
for short speech signals such as keystrokes. We present a new
algorithm called Inductive Vector (IV) to address this issue.
Its purpose is to enhance the resilience of keystroke recogni-
tion to some extent. Through experimentation, we investigate
the detrimental effects of various attribute changes, such as
different environments (Env), keyboard variations (Keyboard),
keyboard or phone movement (Move), different desk materials
(Medium), diverse phones (Phone), and the typing habits of
different users (User).

A. Impact of Various Attribute Change

1) Experimental Settings: We conducted the following ex-
periments to explore the negative impact of the change of
scene.

Model: We take the multilayer perception composed of two
fully connected layers as the keystroke recognition model M .
The first fully connected layer of M uses the standard normal
distribution to initialize the weights and bias values and freezes
the first layer without changing in the later experiments. The
data set calculates normalized ASD as the input of M .

Train Set and Test Set: We collected data from seven
attributes, including five environments, five keyboards, six
keyboard locations, three desk materials, three mobile phones,
eight users, and fifty-six keys in the keyboard’s main function
area. We use the fixed, variable method for experiments.
The data volume is the Cartesian product of all attributes.
Moreover, each key has 100 labels. We randomly divided the
data into a 1:1 ratio train set and test set.
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Fig. 1: The noise overlaps different numbers of sample points
in the original keystroke signal and affects the classification
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Fig. 3: Two randomly overlapping real-world keystroke sig-
nals classify performance using different methods under four
models.

2) Result: The experiment result is shown in Fig 4. It
shows that the change of attributes dramatically lowers the
recognition accuracy, even making the model unable to recog-
nize keystrokes. Also, when the keyboard, environment, phone,
medium, user, or keyboard location changes, the accuracy
drops, even with subtle changes. Therefore, it is necessary to
have a new algorithm to improve the robustness of the model.

B. Feature Transfer Distance

To migrate features, we first need to know the migration
distance. There are many ways to measure feature changes,
and we chose The Fréchet Inception Distance (FID) as a
reference. The Fréchet Inception Distance (FID) d

2(F,G)
is used to calculate the statistical distance in feature Space
between the train set and the test set [29]–[31]. We evaluate
the distance between keystroke data sets in different domains
using FID. The formula is shown below, d2(F,G) = ∣µX −
µY ∣2 + tr [CX + CY − 2(CXCY )1/2] Random variables X
and Y belong to the distributions F and G. And CX and
CY represent the covariance of X and Y , respectively. It is
assumed that the abstract features extracted from the middle
layer of the trained model M constitute the feature space R

n.
The probability distribution of the data set on the feature space
R

n constitutes the discrete multivariate distributions F and G.
Since F and G need to belong to the same distribution before
calculating d

2(F,G), normalization processing is performed
on the data set on R

n to make F , and G conform to
multivariate Gaussian distribution.

TABLE I: Pearson Correlation Coefficient between FID and
Accuracy

Environment Keyboard Move Medium Phone User
Pearson -0.970 -0.685 -0.925 -0.976 -0.955 -0.933

C. Correlation between FID and Accuracy

We use the first fully connected layer to form the feature
space. For each scene, we calculate FID between two data
sets by the training set in the source domain and test set
in the target set while getting keystroke recognition accuracy
between two data sets by the model in the source domain
and test set in the target domain. Then Pearson correlation
coefficient is used to evaluate the relationship between FID
and accuracy (shown in Table I). And the binary one-order
equation is used to fit FID and accuracy (shown in Fig 5).

From Table I, the Pearson correlation coefficient between
FID and accuracy was lower than -0.9, showing a strong
negative correlation. Fig 5 was obtained using binary one-order
equation fitting FID and accuracy. Most data fall near the line,
and an obvious negative correlation exists between FID and
key recognition accuracy. When FID is less than 236, the key
recognition accuracy is more than 0.3.

Our experiments have found that the problem in recognizing
aliased keystroke signals stems from variations in the feature
space, as indicated by the large modulus of FID. However,
we observed that introducing a certain degree of offset can
notably enhance identification accuracy for most signals.

D. Inductive Vector

According to the above experiments, the key accuracy rate
will decrease when the keyboard position and environment
change, making the key recognition system challenging to
deploy because users are likely to move the keyboard or
even change the environment when they are typing for a long
time. Subtle changes exist all the time and affect the model
recognition effect. At the same time, obtaining a large amount
of training data by changing the keyboard position and other
factors is not practical. Therefore, we need a model that can
improve the robustness of key recognition under limited data.
Fortunately, from the above experiments, it can be seen that
FID is strongly correlated with key recognition accuracy.

Meanwhile, FID represents the distance between two data
sets in the feature space, while the Normal Vector divides
and classifies data in the feature space. Therefore, we put
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Fig. 4: Confusion matrix of classification accuracy for different attributes.
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forward a question of whether FID can assist the adaptive
adjustment of the model Normal Vector between different
domains, that is, when a certain factor changes (such as the
keyboard position moving 8cm), can adjust the Normal Vector
of the original model according to the FID of the new data on
the original model, to improve the key recognition accuracy
without retraining. Based on this, we conduct the following
experiments and propose an adaptive algorithm for the Normal
Vector adjustment in different domains, the Inductive Vector
(IV).

1) Algorithm Description: Assume that the model obtained
from the original training set U0 is M0, the Normal Vector
of M0 (i.e., the weight and bias value of the last layer) is
W0, the current data set is U1. The distribution of U0 and U1

on the feature space of M0 is F and G, respectively. When
FID(U0, U1) = d

2(F,G) > λ(Set λ = 236), according to
FID(U0, U1) and W0 obtain new Normal Vector W

′
1, then

use W
′
1 to replace W0 and get new model M ′

1, thus improve
the model accuracy in U1. The model of obtaining new Normal
Vector W ′

1 according to FID(U0, U1) and W is the proposed
Inductive Vector (IV), IV models.

The IV model consists of a fully connected layer, the
number of nodes is the amount of data contained in W0,
and the sigmoid activation function and Adam optimizer are
adopted. MSE is used as a loss function to calculate the
distance between the predicted Normal Vector and the target
Normal Vector, and the training is 1000 rounds. The input
vector of the IV model is the FID of U0 and U1 on the feature
space of M0, and the Normal Vector W0 of M0. The true

value is the Normal Vector W1 trained on the training set of
U1 to obtain the model M1. It is worth noting that, in order
to control variables, the Normal Vector is only affected by
the distribution of data in the feature space, and the previous
experiments show that high key recognition accuracy can be
obtained with the same feature space, so the feature space of
model M0 and M1 is consistent.

TABLE II: Performance comparison of various methods across
different categories.

Method Env Keyboard Move Medium Phone User
Inductive

Vector 0.85 0.71 0.98 0.72 0.71 0.93

BP 0.21 ≤ 0.1 0.05 ≤ 0.2 ≤ 0.1 0.35
BP-STFT ≈ 0 ≈ 0 0.43 ≤ 0.1 ≤ 0.1 ≤ 0.2

SVM-MFCCs 0.21 ≈ 0 0.61 ≤ 0.1 ≤ 0.1 0.32
SVM-ASD 0.53 ≈ 0 0.54 ≤ 0.1 ≤ 0.1 0.32

CNN
+ASD+MFCCs 0.23 ≤ 0.1 0.35 ≤ 0.1 ≤ 0.1 ≤ 0.2

LR-ASD 0.48 ≈ 0 0.55 ≤ 0.1 ≤ 0.1 0.35
Bayesian-ASD 0.22 ≈ 0 0.58 ≤ 0.1 ≤ 0.1 0.3
Decision Tree

-ASD 0.22 ≈ 0 0.3 ≤ 0.1 ≤ 0.1 ≤ 0.2

KNN-ASD 0.38 ≈ 0 0.41 ≤ 0.1 ≤ 0.1 0.33
Baseline
(max ac) 0.53 ≈ 0.1 0.61 ≈ 0.2 ≈ 0.1 0.35

Times 1.6x 71x 1.6x 36x 71x 2.7x

2) Experimental results: In this experiment, for each scene,
we take the last data set in the scene as the test set of the
Inductive Vector model, namely, environment 5, keyboard 5,
keyboard position 6, medium under the keyboard 3, the mobile
phone 3, or user 8, and the remaining data sets in the scene
as the training set of the IV model. We set the baseline as
the accuracy of the original model M0 on target test set U1.
The experimental results of different scenarios are shown in
Table II. The Inductive Vector model consistently enhances
the key recognition accuracy of the original model, achieving
an accuracy that surpasses the baseline by up to 71 times.

IV. SYSTEM OVERVIEW

A. System Workflow

We propose a new keystroke recognition system (Fig 6)
to solve key recognition problems caused by overlapped
multi-key acoustic and environmental condition changes. In
the preparation stage, we obtain the keystrokes from target
keyboards in the room at different distances, but each keyboard
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TABLE III: Comparison Object for Single Keystroke Identifi-
cation

Paper Model Feature
[20] BP neural network STFT

[32]–[34] SVM MFCCs or ASD
[35] CNN ASD+MFCCs

Fig. 6: System Overview

will only have one position as a training set. Then, in the
feature extraction step, Chameleon will get three things: a key-
identifying model, an environmental factors perception model
to identify the changes and an Inductive Vector which can con-
duct the key-identifying model to adapt to the environmental
changes. The system, like Chameleon, can sense changes in
the color of the environment and automatically make changes.

When keystrokes come, Chameleon will input the collected
keystroke signals mixing with several unknown sources to
the Keystroke Segment Extractor. The Keystroke Segment
Extractor will then use a Ranking Model to separate these
overlapping signals by identifying the location and span.
Next, the Keystroke Segment Extractor will find the belong-
ing keyboards according to the keystrokes’ features. Finally,
Chameleon used the three prepared models to identify the
changes in environmental factors in keystrokes and guided the
Inductive Vector to adjust the key-identifying model. So the
Chameleon will recognize the eavesdropped character by the
adaptive key-identifying model.

B. Key-identifying Model

1) Feature Extraction: Because of the feasibility of
keystroke recognition by ASD, we calculate the ASD of
keystroke signal segment s and normalize it. Then, we con-
catenate the normalized ASD from 2 microphones as the fea-
ture x and input it to the corresponding keystroke recognition
model according to ∆A.

2) Model Training: We use the multilayer perceptron M
containing two fully connected layers as the keystroke recog-
nition model. The first fully connected layer contains 1000
nodes, while the second contains 26 nodes with softmax as its
activation function. Then, the epochs of the model are 100,
and the loss function is sparse categorical cross-entropy.

3) Keystroke Recognition: We reconstruct the information
by using M from step 4 and x from step 3. When getting
a large enough data set U1 and FID(D,U1) > δ, we use

Inductive Vector (IV) to adjust the model M and get a
new model M

′
1 to improve the accuracy. The details of the

Inductive Vector are described in Section 8.

V. EVALUTION

A. Real-world Overlapping Signal

1) Data Set: We collect single keystroke data sets R1 and
R2 from two keyboards. The data in the data set R = R1, R2

is the single keystroke signal recording of double microphones
with a sampling rate of 96kHz. Each keystroke operation does
not overlap, and the number of labels is balanced.

We divide R into the training set and verification set and use
the train set and verification set to form an overlapping data
set for evaluating the recognition performance of overlapping
signals.

Train Set and Validation Set: Each subset in data set R
is randomly divided into a training subset (520 samples) and
a validation subset (260 samples) in a 2:1 ratio. The number
of labels in each subset is balanced.

Overlapping Data Set: We collected an overlapping acous-
tic data set of 10000 samples. We randomly select data from
the verification set with putting back (it is uncertain whether
they come from the same keyboard and whether they come
from the same key) and then randomly select the overlapping
beginning position of the second keystroke (i.e., ∆t = ta − tb
randomly, where ta is the beginning position of the first
keystroke, tb is the beginning position of the second keystroke.
Then, the two signals are linearly super-placed together in
accordance with ∆t to create an overlapping signal, which is
labeled with the keys, keyboards, and ∆t corresponding to the
two sets of data. Each sample in the overlapping acoustic data
set is synthesized as described above.

Mixed Data Set: We use the validation set and overlapping
data set in a 1:1 ratio to synthesize a mixed acoustic data set
used to evaluate the overall effect of the system.

2) Overall Performance: We use a mixed data set to eval-
uate the system’s overall performance. The keystroke recog-
nition accuracy is 87.31%, proving the model’s feasibility in
dual keyboard mixed key recognition.

3) Performance in Details: We also use mixed data set
to evaluate the keystroke beginning estimation algorithm,
keystroke number determination algorithm, and keystroke-
keyboard matching algorithm. Then, an ablation experiment
was conducted for each step to explore the influence of each
part on keystroke recognition.

Keystroke Beginning Estimation: We take the threshold-
based algorithm as the baseline of keystroke beginning esti-
mation. The algorithm based on the threshold takes the fixed
threshold ρ(ρ=0.1) as the cutting standard. When a signal’s
absolute value of time t is more significant than ρ, the signal
fragment from t-5.21ms to t+244.79 ms is intercepted as the
key signal.

We use the recognition accuracy on different keyboards
as the evaluation standard of keystroke beginning estimation.
Specifically, we use VAD or baseline to extract keystroke sig-
nal segments from R1 or R2. Keystroke recognition accuracy
was obtained as shown in Fig 7.
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Fig. 7: Keystroke Beginning Estimation Performance Com-
pared with Baseline

TABLE IV: The performance of Each Step

performance
Keystroke Beginning Estimation 80.4%
Keystroke Number Estimation 87.5%
Overlap Beginning Estimation 5.32e+05
Keystroke-Keyboard Matching 87.3%

Due to the different energy of sound waves emitted by
different keyboards, the baseline cannot adapt to the diversity
of keystrokes with a fixed threshold. So the beginning position
is unstable, leading to a decrease in the recognition rate.

Keystroke Number Estimation: We take the number of
keystrokes fixed at two as the baseline, so the accuracy of
keystroke number estimation is 87.5%.

Keystroke-Keyboard Matching: In our cognition, this
topic is the first work for multi-keyboard mixed keystroke
recognition. Therefore, we assume that all keystrokes come
from a single keyboard. As the baseline of this algorithm, the
correct rate of keystroke recognition achieved by the system
is 87.3%.

Summary: The recognition effect of each step is shown
in Table IV. The accuracy of single key recognition is about
80.4% by using the keystroke signal after VAD is used. The
accuracy of keystroke number estimation is about 87.5%; The
MSE of the overlapping beginning position estimation is about
5.32e+05; The accuracy of keystroke-keyboard matching is
87.3%.

VI. RELATED WORK

A. Keystroke Recognition

Previous studies can be broadly divided into two categories
based on Model-driven, like TDOA (Time Difference Of Ar-
rival) and Data-driven. The keystroke recognition algorithms
in model-driven are based on TDOA [21], [22]. They uti-
lized multiple microphones and used the hyperbolic functions
between more than two microphones to localize the keys’
position. However, this method requires prior knowledge of
phone and keyboard layout because it is tough to satisfy the
deployment of such prior knowledge, especially the keyboard
snooping. Chameleon do not require prior knowledge of the
layout and can place phones arbitrarily.

Machine Learning has been used in keystroke recognition
for a long time. In detail, using neural network (BP neural
network [20], support vector machine [32], [33], RNN [36])
trained a large amount of data to obtain a single keystroke
recognition model. The input of the model is ASD (amplitude-
spectrum diagram) [33], MFCC (Mel Frequency Cepstral
Coefficient) [32], STFT (Short-Time Fourier Transform) [20],
[36], DTW (Dynamic Time Warping) [37], Cross-Correlation

[37], frequency-based distance [37] or other common signals
Physical characteristics. However, the accuracy of these meth-
ods could be more robust to the environment. The location
change of the phone easily misjudges the recognition and the
interference of other external key sounds. Chameleon can
adapt to these changes and has high accuracy in the same
environment. In our cognition, we are the first to focus on
a fixed keyboard or a single keystroke and the overlapping
signals from the same or different keyboard.

B. Blind Source Separation
The technique of decomposing a mixed signal composed

of multiple source signals is called blind source separation.
Traditionally, blind source separation techniques based on
mathematical models have assumptions on the mixed and
source signals. Related algorithms have also been proposed
under these assumptions, which mainly include Independent
Component Analysis [24] (like assuming that the source signal
satisfies independence), Sparse Component Analysis [25] (like
assuming that the source signal has sparsity in some domains).
Non-negative Matrix Factorization [26] (like assuming that
both the source signal and the mixing coefficients are non-
negative) and Bounded Component Analysis [27] (like assum-
ing that the source signal and noise have bounded properties).
Nevertheless, in practice, these assumptions may need to be
revised. At the same time, neural networks are also used in
blind source separation [28], using frequency domain or time
domain data as input to the neural network. However, poor
separation results are obtained when the noise or the SNR is
not matched.

VII. CONCLUSION AND LIMITATION

We have demonstrated that the change of scene dramatically
lowers the keystroke recognition accuracy, and keystroke sig-
nal overlapping occurs with high probability (0.1302 ⋅ n, n
is the number of keyboards), leading to signal overlap and
alignment problems. To solve these problems, we propose
an inductive vector to improve the robustness of the model,
improving the accuracy when the environment, keyboard lo-
cation, or user changes. Meanwhile, we use the first 42ms
of the keystroke signal to solve the signal overlap problem
and introduce Ranking-CNN to solve signal alignment. Finally,
we implement a system to reconstruct information from two
keyboards.

Although this approach can partially compensate for en-
vironmental interference, it is only sometimes suitable for
some conditions, particularly when it comes to the keyboard,
desktop material, and mobile phone changes, where its ef-
fectiveness is limited. The primary reason for this is the
non-linear transformation of signal characteristics. Changes
in keyboard and desktop materials result in alterations to
signal properties, while mobile phones exhibit differences in
microphone position and frequency response curves. These is-
sues remain unresolved. Additionally, while the precise cutting
method has shown effective enhancements, Ranking-CNN still
necessitates substantial computational resources. Developing a
lower-computation method would be highly valuable in this
regard.
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